MA30041: Metric Spaces

Exercise Sheet 8: Contractions

Please hand solutions in at the lecture on Monday 24th November.
1.) Let (X, d) and (Y, \tilde{d}) be metric spaces and let $f, g: X \rightarrow Y$ be continuous maps. Prove: the set $F=\{x \in X \mid f(x)=g(x)\}$ is a closed subset of X. Hence show $f=g$ if F is dense in X.
Hint: Show that F^{c} is open.
2.) (i) Heron method for finding square roots: Let r be a positive real number. Show: $x \mapsto \frac{1}{2}\left(x+\frac{r}{x}\right)$ is a contraction on $\left\{x \in \mathbb{R} \mid x^{2} \geq r\right\}$ (well, is it really? If not, why does it not matter here?). Determine the fixed point. What happens if one starts the iteration with some $x_{0} \in\left\{x \in \mathbb{R} \mid x>0, x^{2}<r\right\}$?
(ii) Show by an example that the completeness assumption in Banach's Fixed Point Theorem is important.
3.) (i) Newton (-Raphson) method for finding roots: Let f be a twice differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that all its roots are simple (i.e., if $f\left(x^{*}\right)=0$ for some $x^{*} \in \mathbb{R}$, then $\left.f^{\prime}\left(x^{*}\right) \neq 0\right)$. Show: For every root x^{*} of f,

$$
T(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

is a contraction in some neighbourhood of x^{*}.
(ii) Calculate the roots of

- $g(x)=x^{4}-3 x+1$ and
- $h(x)=\arctan (x)-x-1$.
4.) (i) Use Picard's Theorem to find a solution of the intitial value problem

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=t^{2}+x, \quad x(0)=1 .
$$

(ii) Consider the initial value problem

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{t+\mathrm{e}^{x}}, \quad x(\alpha)=\beta
$$

with $\alpha \in[a, b] \subset(0, \infty)$, and show that it has a unique solution $x(t)$ defined on any interval $[a, b]$ and thus on all of $(0, \infty)$.
Hint: Show that for any $t \in[a, b]$ and $x \in \mathbb{R}$ we have $\frac{\mathrm{e}^{x}}{\left(t+\mathrm{e}^{x}\right)^{2}} \leq \frac{1}{t} \leq \frac{1}{a}$.
5.) (i) Let $\mathcal{K} \mathbb{R}^{n}$ be the space of all nonempty, closed and bounded subsets of \mathbb{R}^{n}. Show that the Hausdorff metric d_{H}, defined by

$$
d_{H}\left(K_{1}, K_{2}\right)=\max \left\{\sup _{b \in K_{2}} \operatorname{dist}\left(K_{1}, b\right), \sup _{a \in K_{1}} \operatorname{dist}\left(a, K_{2}\right)\right\}
$$

where $K_{1}, K_{2} \in \mathcal{K} \mathbb{R}^{n}$, is a metric.
(ii) Let $f_{0}(x)=\frac{1}{3} x$ and $f_{1}(x)=\frac{1}{3} x+\frac{2}{3}$, and define $f: \mathcal{K} \mathbb{R} \rightarrow \mathcal{K} \mathbb{R}$ by $f(K)=$ $f_{0}(K) \cup f_{1}(K)$. Show: f is a contraction on $\mathcal{K} \mathbb{R}$.
(iii) Without proof, we are using that $\mathcal{K} \mathbb{R}^{n}$ is complete w.r.t. d_{H}. We call the fixed point of the contraction f in (ii) the (middle third) Cantor set C. Show: C is bounded, closed, $C^{\prime}=C$, has empty interior and is uncountable.
Hint: For the empty interior part, use the alternative construction of C by removing subsequently the middle third of each interval (starting from $[0,1]$). For the uncountability, first show that the set of all infinite $0-1$-sequences is uncountable.
6.) Prove the Implicit Function Theorem on \mathbb{R}^{2} : Let $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R},(t, x) \mapsto f(t, x)$ be a continous function with $0<m \leq \frac{\partial f}{\partial x} \leq M$ for some constants m, M, and all $t \in[a, b]$ and $x \in \mathbb{R}$. Then there exists a unique continuous function $x:[a, b] \rightarrow \mathbb{R}$ s.t. $f(t, x(t))=0$ for all $t \in[a, b]$, i.e., the equation $f(t, x)=0$ implicitly defines a unique continuous function $x(t)$.
Hint: Show - using the mean value theorem - that

$$
T(x)(t)=x(t)-\frac{f(t, x(t))}{M}
$$

is a contraction on $C[a, b]$.

