MA30041: Metric Spaces

Exercise Sheet 5: Open and closed sets

Please hand solutions in at the lecture on Monday 3rd November.
1.) For subsets A_{1}, A_{2} of a metric space (X, d) we define the distance between A_{1} and A_{2} by

$$
\operatorname{dist}\left(A_{1}, A_{2}\right)= \begin{cases}\infty & \text { if } A_{1}=\varnothing \text { or } A_{2}=\varnothing \\ \inf \left\{d(x, y) \mid x \in A_{1}, y \in A_{2}\right\} & \text { if } A_{1} \neq \varnothing \neq A_{2}\end{cases}
$$

Obviously, we have $\operatorname{dist}(\{x\},\{y\})=d(x, y)$ for all $x, y \in X$. If one of the sets consists of a single point, we use the notation $\operatorname{dist}(x, A)$ instead of $\operatorname{dist}(\{x\}, A)$. Let $A_{1}, A_{2}, A_{3} \subset X$. Show:
(i) $\operatorname{dist}\left(A_{1}, A_{2}\right)=\operatorname{dist}\left(A_{2}, A_{1}\right)$.
(ii) If $A_{1} \subset A_{2}$, then $\operatorname{dist}\left(A_{2}, A_{3}\right) \leq \operatorname{dist}\left(A_{1}, A_{3}\right)$.
(iii) If $A_{1} \cap A_{2} \neq \varnothing$, then $\operatorname{dist}\left(A_{1}, A_{2}\right)=0$.
(iv) $\mathrm{cl} A_{1}=\left\{x \in X \mid \operatorname{dist}\left(x, A_{1}\right)=0\right\}$.
(v) $\operatorname{dist}\left(A_{1}, A_{2}\right)=\operatorname{dist}\left(\operatorname{cl} A_{1}, A_{2}\right)$.
(vi) We say that A_{1} and A_{2} are adjacent if $\operatorname{dist}\left(A_{1}, A_{2}\right)=0$. Show that being adjacent is not an equivalence relation.
2.) Let A_{1}, A_{2} be subsets of a metric space (X, d). Show
(i) $\operatorname{diam} A_{1}=\operatorname{diam}\left(\operatorname{cl} A_{1}\right)$.
(ii) $\operatorname{int} A_{1} \cup \operatorname{int} A_{2} \subset \operatorname{int}\left(A_{1} \cup A_{2}\right)$.
(iii) $\operatorname{cl}\left(A_{1} \backslash A_{2}\right) \subset \operatorname{cl} A_{1} \backslash \operatorname{int} A_{2}$.
(iv) $\partial\left(A_{1} \cup A_{2}\right) \subset\left(\partial A_{1} \backslash \operatorname{int} A_{2}\right) \cup\left(\partial A_{2} \backslash \operatorname{int} A_{1}\right)$.
(v) In the cases (ii)-(iv), show that " \subset " can in general not be replaced by " $=$ ".
3.) Consider the metric space $\left(C[0,1], d_{\max }\right)$.
(i) Let $U=\{f \in C[0,1] \mid f(0)=0\}$. Is U closed?
(ii) Let $A=\{f \in C[0,1] \mid f(1)>0\}$. What is ∂A ?
(iii) We say that a function $f:[0,1] \rightarrow \mathbb{R}$ is monotonically increasing if $f(x) \leq$ $f(y)$ whenever $x<y$. Let $V=\{f \in C[0,1] \mid f$ is monotonically increasing $\}$. What is ∂V ?
4.) In this question, \mathbb{R}^{2} is always equipped with the Euclidean metric d_{E}.
(i) Which of the following sets are open respectively closed? Are they bounded or even a ball?

- $A=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ in \mathbb{R}^{2}.
- The square $A=\left\{(x, y) \in \mathbb{R}^{2} \mid-1<x<1,-1<y<1\right\}$ in \mathbb{R}^{2}.
- $A=\{1,2\}$ in $X=\{1,2,3\}$ equipped with the discrete metric.
(ii) Find the closure, interior and boundary of the following sets in \mathbb{R}^{2} :
- The closed unit ball $\bar{B}_{1}((0,0))$.
- The graph of $y=\sin \left(\frac{1}{x}\right)$ for $x>0$.
(iii) Find the boundaries of the following sets:
- The set $[0,1)$ as a subset of the metric space $[0,1]$ with the usual metric.
- The subset $A=\mathbb{R} \times\{0\}$ (the " x-axis") in \mathbb{R}^{2}.
5.) Let $\mathbb{Q}=\left\{q_{k} \mid k \in \mathbb{N}\right\}$ be an enumeration of the rational numbers. Let $A=$ $\bigcup_{k \in \mathbb{N}}\left(q_{k}-2^{-k}, q_{k}+2^{-k}\right)$. Show that the boundary of A, as a subset of \mathbb{R} with the usual metric, is $\mathbb{R} \backslash A=A^{c}$. What makes this example "surprising"?
6.) We equip \mathbb{Z} with the so-called 2-adic metric d given by

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 2^{-k} & \text { where } k \text { is the largest power of } 2 \text { which divides }|x-y|\end{cases}
$$

Thus, for example, an even number has distance at most $\frac{1}{2}$ from 0 , while any odd number has distance 1 from 0 . The integers divisible by 4 have distance at most $\frac{1}{4}$ from 0 etc.
(i) Check the triangle inequality.
(ii) Show: Any ball is a clopen set.
(iii) Show: Two balls $B_{r}(x), B_{r^{\prime}}(y)$ are either disjoint (i.e., $B_{r}(x) \cap B_{r^{\prime}}(y)=\varnothing$) or one is contained in the other (i.e., $B_{r}(x) \subset B_{r^{\prime}}(y)$ or $B_{r^{\prime}}(y) \subset B_{r}(x)$).
(iv) Show: (\mathbb{Z}, d) is not complete.

Hint: Consider the sequence $\left(\sum_{k=1}^{n} 2^{k}\right)$.

