MA30041: Metric Spaces

EXERCISE SHEET 5: OPEN AND CLOSED SETS

Please hand solutions in at the lecture on Monday 3rd November.

1.) For subsets A_1, A_2 of a metric space (X, d) we define the *distance* between A_1 and A_2 by

$$\operatorname{dist}(A_1, A_2) = \begin{cases} \infty & \text{if } A_1 = \emptyset \text{ or } A_2 = \emptyset, \\ \inf\{d(x, y) \mid x \in A_1, y \in A_2\} & \text{if } A_1 \neq \emptyset \neq A_2. \end{cases}$$

Obviously, we have $dist(\{x\}, \{y\}) = d(x, y)$ for all $x, y \in X$. If one of the sets consists of a single point, we use the notation dist(x, A) instead of $dist(\{x\}, A)$. Let $A_1, A_2, A_3 \subset X$. Show:

- (i) $dist(A_1, A_2) = dist(A_2, A_1).$
- (ii) If $A_1 \subset A_2$, then $\operatorname{dist}(A_2, A_3) \leq \operatorname{dist}(A_1, A_3)$.
- (iii) If $A_1 \cap A_2 \neq \emptyset$, then dist $(A_1, A_2) = 0$.
- (iv) $\operatorname{cl} A_1 = \{x \in X \mid \operatorname{dist}(x, A_1) = 0\}.$
- (v) $dist(A_1, A_2) = dist(cl A_1, A_2).$
- (vi) We say that A_1 and A_2 are *adjacent* if $dist(A_1, A_2) = 0$. Show that being adjacent is not an equivalence relation.
- 2.) Let A_1 , A_2 be subsets of a metric space (X, d). Show
 - (i) diam $A_1 = \operatorname{diam}(\operatorname{cl} A_1)$.
 - (ii) $\operatorname{int} A_1 \cup \operatorname{int} A_2 \subset \operatorname{int} (A_1 \cup A_2).$
 - (iii) $\operatorname{cl}(A_1 \setminus A_2) \subset \operatorname{cl} A_1 \setminus \operatorname{int} A_2$.
 - (iv) $\partial (A_1 \cup A_2) \subset (\partial A_1 \setminus \operatorname{int} A_2) \cup (\partial A_2 \setminus \operatorname{int} A_1).$
 - (v) In the cases (ii)–(iv), show that " \subset " can in general not be replaced by "=".

3.) Consider the metric space $(C[0, 1], d_{\text{max}})$.

- (i) Let $U = \{f \in C[0, 1] \mid f(0) = 0\}$. Is U closed?
- (ii) Let $A = \{f \in C[0, 1] \mid f(1) > 0\}$. What is ∂A ?
- (iii) We say that a function $f : [0,1] \to \mathbb{R}$ is monotonically increasing if $f(x) \le f(y)$ whenever x < y. Let $V = \{f \in C[0,1] \mid f \text{ is monotonically increasing }\}$. What is ∂V ?

Please turn over!

- 4.) In this question, \mathbb{R}^2 is always equipped with the Euclidean metric d_E .
 - (i) Which of the following sets are open respectively closed? Are they bounded or even a ball?
 - $A = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ in \mathbb{R}^2 .
 - The square $A = \{(x, y) \in \mathbb{R}^2 \mid -1 < x < 1, -1 < y < 1\}$ in \mathbb{R}^2 .
 - $A = \{1, 2\}$ in $X = \{1, 2, 3\}$ equipped with the discrete metric.
 - (ii) Find the closure, interior and boundary of the following sets in \mathbb{R}^2 :
 - The closed unit ball $\overline{B}_1((0,0))$.
 - The graph of $y = \sin\left(\frac{1}{x}\right)$ for x > 0.
 - (iii) Find the boundaries of the following sets:
 - The set [0, 1) as a subset of the metric space [0, 1] with the usual metric.
 - The subset $A = \mathbb{R} \times \{0\}$ (the "x-axis") in \mathbb{R}^2 .
- 5.) Let $\mathbb{Q} = \{q_k \mid k \in \mathbb{N}\}$ be an enumeration of the rational numbers. Let $A = \bigcup_{k \in \mathbb{N}} (q_k 2^{-k}, q_k + 2^{-k})$. Show that the boundary of A, as a subset of \mathbb{R} with the usual metric, is $\mathbb{R} \setminus A = A^c$. What makes this example "surprising"?
- 6.) We equip \mathbb{Z} with the so-called 2-*adic metric* d given by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 2^{-k} & \text{where } k \text{ is the largest power of } 2 \text{ which divides } |x - y|. \end{cases}$$

Thus, for example, an even number has distance at most $\frac{1}{2}$ from 0, while any odd number has distance 1 from 0. The integers divisible by 4 have distance at most $\frac{1}{4}$ from 0 etc.

- (i) Check the triangle inequality.
- (ii) Show: Any ball is a clopen set.
- (iii) Show: Two balls $B_r(x)$, $B_{r'}(y)$ are either disjoint (i.e., $B_r(x) \cap B_{r'}(y) = \emptyset$) or one is contained in the other (i.e., $B_r(x) \subset B_{r'}(y)$ or $B_{r'}(y) \subset B_r(x)$).
- (iv) Show: (\mathbb{Z}, d) is not complete. *Hint:* Consider the sequence $(\sum_{k=1}^{n} 2^k)$.