MA30041: Metric Spaces

EXERCISE SHEET 4: OPEN BALLS AND OPEN SETS

Please hand solutions in at the lecture on Monday 27th October.

- Consider the n-dimensional Euclidean space Rⁿ equipped with the product metrics d₁, d₂ respectively d_∞.
 Show: A subset A ⊂ Rⁿ is open w.r.t. any one of these metrics iff it is open w.r.t. any other.
- 2.) (i) Consider $(C[0,1], d_{\max})$ and let $f \equiv 0$ (i.e., $f(x) = 0 \ \forall x \in [0,1]$). Describe the open unit ball $B_1^{(d_{\max})}(f)$.
 - (ii) Consider $(C[0,1], d_R)$ and let $f \equiv 0$. What is the open unit ball $B_1^{(d_R)}(f)$ now?
 - (iii) Does one of the balls $B_1^{(d_{\max})}(f)$, $B_1^{(d_R)}(f)$ contain the other?
- 3.) (i) Consider the X-prickly hedgehog (see Exercise sheet 1 Question 3). Describe its open balls.
 - (ii) Let (X, d_D) be a discrete metric space. Describe the open and closed balls and conclude that all balls are *clopen* sets, i.e., open and closed. Is the closure of an open ball always a closed ball of the same radius?
- 4.) Let $G \subset \mathbb{R}$ be open.
 - (i) For each $x \in G$, let I_x be the union of all open intervals contained in G and containing x. Show that I_x is an open (possibly unbounded) interval.
 - (ii) For $x \neq y \in G$, show that $I_x = I_y$ or $I_x \cap I_y = \emptyset$.
 - (iii) Conclude that G is a union of countably many, pairwise disjoint open intervals.

Hint: Any open interval in \mathbb{R} contains a rational number.

- (iv) What might be an analogous statement in \mathbb{R}^n (no proof required, just guess)?
- 5.) Convince yourself that the following statements are true:
 - (i) A subset G in a metric space (X, d) is open iff it is the union of all open balls contained in G.
 - (ii) A subset G is open iff $G = \operatorname{int} G$.
 - (iii) For any subset A of a metric space (X, d) we have $A^{\circ \circ} = A^{\circ}$ where $A^{\circ \circ}$ denotes $(A^{\circ})^{\circ}$ (i.e., int(int A)),

Please turn over!

6.) We continue to explore the metrics d_{\max} and d_R on C[a, b] where a < b (see Exercise sheet 3 Question 5). Recall the following definition from (M11):

> A sequence $(f_n) \subset C[a, b]$ converges uniformly to $f : [a, b] \to \mathbb{R}$ if $\forall \varepsilon > 0$ $\exists N \in \mathbb{N} \text{ s.t. } \forall m \geq N \text{ and } \forall t \in [a, b] \text{ we have } |f_m(t) - f(t)| < \varepsilon.$

Check which of the following statements hold:

- (i) "A sequence (f_n) in $(C[a, b], d_{max})$ is convergent, if it converges uniformly."
- (ii) "A sequence (f_n) in $(C[a, b], d_R)$ is convergent, if it converges uniformly."
- (iii) "A sequence (f_n) converges uniformly, if it converges in $(C[a, b], d_{max})$."
- (iv) "A sequence (f_n) converges uniformly, if it converges in $(C[a, b], d_R)$."