MA30041: Metric Spaces

Exercise Sheet 3: Completions

Please hand solutions in at the lecture on Monday 20th October.
1.) Let (X, d) be a complete metric space and let $\left(x_{n}\right)$ be a sequence in X such that there is a $\theta \in(0,1)$ with $d\left(x_{n+2}, x_{n+1}\right) \leq \theta \cdot d\left(x_{n+1}, x_{n}\right)$ for $n \in \mathbb{N}$. Show that $\left(x_{n}\right)$ is convergent.
2.) Show: If d and d^{\prime} are uniformly equivalent metrics on X, then $\left(x_{n}\right)$ is a Cauchy sequence w.r.t. d iff $\left(x_{n}\right)$ is a Cauchy sequence w.r.t. d^{\prime}.
3.) We say that a metric space (X, d) is finite if X is a finite set.
(i) Show: A finite metric space (X, d) is uniformly equivalent to $\left(X, d_{D}\right)$ where d_{D} denotes the discrete metric.
(ii) Show: Any discrete finite metric space $\left(X, d_{D}\right)$ is complete.

You might find the following terminology useful:
We say that a sequence $\left(x_{n}\right) \subset X$ is eventually constant if there exists an $x \in X$ and an $N \in \mathbb{N}$ s.t. $x_{n}=x \forall n \geq N$.
(iii) Deduce that any finite metric space (X, d) is complete.
4.) In this question we explore \mathbb{N} equipped with usual Euclidean metric $d_{E}(x, y)=$ $|x-y|$, the discrete metric d_{D} and the inverse metric $d_{\text {inv }}(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|$.
(i) Recall the terminology "eventually constant" (see previous question) and show: $d_{E}, d_{D}, d_{\text {inv }}$ are equivalent, but no two of them are uniformly equivalent.
(ii) Show: $\left(\mathbb{N}, d_{E}\right)$ and $\left(\mathbb{N}, d_{D}\right)$ are complete metric spaces, while $\left(\mathbb{N}, d_{\text {inv }}\right)$ is incomplete.
(iii) Complete ($\mathbb{N}, d_{\text {inv }}$).
5.) We continue to explore the metrics $d_{\text {max }}$ and d_{R} on $C[a, b]$ where $a<b$ (see Exercise sheet 2 Question 3).
Recall the following definition from (M11):
A sequence $\left(f_{n}\right) \subset C[a, b]$ converges pointwise to $f:[a, b] \rightarrow \mathbb{R}$ if $\forall t \in[a, b]$ and $\forall \varepsilon>0 \exists N \in \mathbb{N}$ s.t. $\forall m \geq N$ we have $\left|f_{m}(t)-f(t)\right|<\varepsilon$.

Check which of the following statements hold:
(i) "A sequence $\left(f_{n}\right)$ in $\left(C[a, b], d_{\text {max }}\right)$ is convergent, if it converges pointwise."
(ii) "A sequence $\left(f_{n}\right)$ in $\left(C[a, b], d_{R}\right)$ is convergent, if it converges pointwise."
(iii) "A sequence $\left(f_{n}\right)$ converges pointwise, if it converges in $\left(C[a, b], d_{\text {max }}\right)$."
(iv) "A sequence $\left(f_{n}\right)$ converges pointwise, if it converges in $\left(C[a, b], d_{R}\right)$."

