MA30041: Metric Spaces ## Self-Assessment Sheet 7: Homeomorphisms | 1.) | Let (X,d) and (Y,d') be metric spaces and let $f:X\to Y$ be a surjective isometry. Prove that f is a homeomorphism. For a solution, click on the the following space: | |-----|---| | 2.) | Show that if (X, d) is a discrete metric space and (Y, d') is any metric space, then any function $f: X \to Y$ is continuous.
Use each of the (following) three equivalent criteria for continuity directly!
For a solution, click on the the following spaces: | | | • ε - δ proof: | | | • proof by sequences: | | | • proof using open sets: | | 3.) | Let (X, d) and (Y, d') be discrete metric spaces. Show: Any bijective map $f: X \to Y$ is a homeomorphism For a solution, click on the the following space: | | 4.) | Show that \mathbb{R} and $(0, \infty)$, both equipped with the usual metric, are homeomorphic For a solution, click on the the following space: |