MA30041: Metric Spaces

Self-Assessment Sheet 6: Continuous functions

1.)	Why is the function $f: \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (\cos(x), \sin(x))$ continuous?
	For a solution, click on the the following space:

2.) Given an example of a continuous function f from a metric space (X, d) to (Y, d') and a closed bounded subset $A \subset X$ s.t. f(A) is neither closed nor bounded in (Y, d').

For a solution, click on the the following space:

- _____
- 3.) Recall the following definition from (M11):

A sequence $(f_n) \subset C[a,b]$ converges pointwise to $f:[a,b] \to \mathbb{R}$ if $\forall t \in [a,b]$ and $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{s.t.} \ \forall m \geq N \ \text{we have} \ |f_m(t) - f(t)| < \varepsilon$.

What, by analogy, must be the corresponding definition for a $f: X \to Y$ from a metric space (X, d) to (Y, d').

For a solution, click on the the following space:

4.) Recall the following definition from (M11):

A sequence $(f_n) \subset C[a,b]$ converges uniformly to $f:[a,b] \to \mathbb{R}$ if $\forall \varepsilon > 0$ $\exists N \in \mathbb{N} \text{ s.t. } \forall m \geq N \text{ and } \forall t \in [a,b] \text{ we have } |f_m(t) - f(t)| < \varepsilon.$

What, by analogy, must be the corresponding definition for a $f: X \to Y$ from a metric space (X, d) to (Y, d').

For a solution, click on the the following space: