MA30041: Metric Spaces ## Self-Assessment Sheet 5: Topology of metric spaces | 1.) | Show: For any two points x, y of a metric space (X, d) , there exist disjoint open balls s.t. one is centred at x and the other centred at y . For a solution, click on the the following space: | |-----|---| | 2.) | Give an example of a metric space (X, d) s.t. X contains a set U which is both open and closed and a set V which is neither open nor closed. For a solution, click on the the following space: | | 3.) | Given an example a subset A of of \mathbb{R} (equipped with the usual metric) s.t. diam (int A) < diam A . For a solution, click on the the following space: | | 4.) | Show: $X = \text{int} A \cup \partial A \cup \text{int} (A^c)$ for any subset A of a metric space (X, d) .
For a solution, click on the the following space:
(note, we are using the notation $A_1 - A_2$ for $A_1 \setminus A_2$ here) | | 5.) | Can you find a metric spaces (X, d) where (i) $[0, 1]$ is clopen? (ii) $(0, \frac{1}{2})$ is clopen? (iii) $[0, \frac{1}{2})$ is open but not closed? For a solution, click on the the following space: |