MA30041: Metric Spaces

Self-Assessment Sheet 3: Cauchy Sequences & Completions

1.) (i) Show: A sequence (x_n) in a metric space (X, d) is a Cauchy sequence iff $\forall \varepsilon > 0 \ exists N \in \mathbb{N} \ s.t. \ d(x_m, x_N) < \varepsilon \ for \ all \ m \ge N.$ For a solution, click on the the following spaces:

"⇒":			
<i>،،</i> ›› .			

(ii) Show: A sequence (x_n) in a metric space (X, d) is a Cauchy sequence iff

 $\lim_{N \to \infty} \operatorname{diam} \{ x_m \mid m \ge N \} = 0.$

For a solution, click on the the following spaces:

2.) In the proof of Theorem II.9 b.), i.e., that $(C[a, b], d_{\max})$ is complete, we proceeded as follows: Given a sequence (f_n) of functions $f_n : [a, b] \to \mathbb{R}$, we considered the limit $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in [a, b]$ and then showed that f is continuous. Now, let us do an example: Certainly, the functions $f_n(x) = x^n$ are continuous on [0, 1]. However, for f we get here (check!)

$$f(x) = \begin{cases} 0 & \text{if } x \in [0, 1), \\ 1 & \text{if } x = 1, \end{cases}$$

which is clearly not continuous.

So, where have we gone wrong here? Is $(C[a, b], d_{\max})$ not complete? Or is the proof wrong (and if so, can we repair it)? For a solution, click on the following space:

Please turn over!

- 3.) If one would prove Theorem II.10, i.e., that every metric space (X, d) has a (up to isometry unique) completion (X^*, d^*) , then the first few steps are as follows:
 - Consider the space \hat{X} of all Cauchy sequences of X.
 - Define a pseudometric ρ on \hat{X} by $\rho((x_n), (y_n)) = \lim_{n \to \infty} d(x_n, y_n)$.
 - Then define the following equivalence relation: Two Cauchy sequences (x_n) , (y_n) are equivalent, i.e., $(x_n) \sim (y_n)$, iff $\rho((x_n), (y_n)) = 0$. Use this, as in Exercise sheet 2 Question 2, to obtain a metric space $X^* = \hat{X} / \sim$.
 - Clearly, (X, d) is an isometric subspace of X^* . The isometric map sends a point $x \in X$ to the (equivalence class of the) constant sequence (x, x, x, x, ...).
 - The problem is then to show that X^* is indeed complete.

In few of these sketchy steps (and although the proof does not apply if one wants to construct \mathbb{R} from \mathbb{Q}), why does the equation 0.99999... = 1 hold (or, what does it mean? And is this the reason you were told at school?)? For a comment, click on the following space: