MA30041: Metric Spaces

Self-Assessment Sheet 2: Further Examples & Convergent Sequences

1.) A complex number $z = x + iy \in \mathbb{C}$ can be represented as point (x, y) in the plane \mathbb{R}^2 . One can also associate a point (u, v, w) on the unit sphere $\mathbb{S} = \{(u, v, w) \in \mathbb{R}^3 \mid u^2 + v^2 + w^2 = 1\}$, with a given point (x, y) in the plane¹. The associated mapping is called *stereographic projection*.

We note:

- The equator of the sphere corresponds to the unit circle in the plane.
- The south pole (0,0,-1) corresponds to the origin (0,0).
- A point (u, v, w) on the sphere corresponds to (x, y) if the north pole (0, 0, 1), (u, v, w) and (x, y, 0) lie on a line.

The stereographic projection, which projects a point $(u, v, w) \in \mathbb{S} \setminus \{0, 0, 1\}$ to a point of the (complex) plane $z = x + iy \in \mathbb{C} \cong \mathbb{R}^2$, and its inverse are given by the following maps (check!):

$$u = \frac{2x}{|z|^2 + 1},$$
 $v = \frac{2y}{|z|^2 + 1},$ $w = \frac{|z|^2 - 1}{|z|^2 + 1}$

and

$$x = \frac{u}{1 - w}, \qquad y = \frac{v}{1 - w}.$$

Now, think about this construction in terms of metric spaces: What is happening to \mathbb{C} here?

For a solution, click on the the following space:

Please turn over!

¹We embed the plane into \mathbb{R}^3 by $(x,y) \mapsto (x,y,0)$.

3.)	If (X, d) is a metric space and $Y \subset X$, then Y is made into a metric subspace of X in one way only, namely, by restricting the metric d of X to $Y \times Y$.
	Suppose now that (X,d) is a metric space and Y is a proper superset of X , i.e., $X \subset Y$ and $X \neq Y$. Is it always possible to define a metric d' on Y that is an extension of d (i.e., so that (X,d) is a metric subspace of (Y,d'))? For a solution, click on the following space: (note, we are using the notation $Y - X$ for $Y \setminus X$ here)
4.)	We say that a sequence $(x_n) \subset X$ is eventually constant if there exists an $x \in X$
	and an $N \in \mathbb{N}$ s.t. $x_n = x \ \forall n \geq N$.
	Show: In a discrete metric space (X, d) a sequence (x_n) is convergent iff it is eventually constant.
	For a solution, click on the following space: