MA30041: Metric Spaces

REMARKS ON THE LECTURES

Lecture 29.9.

Chapter I: Definition & Examples

- Definition metric space: [Shirali, Definition 1.2.1 (p. 27f)].
- Theorem I.1: Exercise sheet 1, Question 1.
- Discrete metric space with metric d_D : [Shirali, Example 1.2.2(v) (p. 30)].
- Usual or standard metric on \mathbb{R} : [Shirali, Example 1.2.2(i) (p. 28)].
- n-dimensional Euclidean metric $d_{\rm E}$ (or d_2): [Shirali, Example 1.2.2(ii) (p. 28f)].
- Theorem I.2 (Cauchy-Schwarz inequality): see [Shirali, Theorem 1.1.4 (p. 25)].
- Sum (or taxicab/Manhattan/New York) metric d_1 on \mathbb{R}^n : see [Shirali, Example 1.2.2(iii) (p. 29f)].
- Maximum metric d_{∞} on \mathbb{R}^n : [Shirali, Example 1.2.2(iv) (p. 30)].
- Barbed wire or jungle river metric on \mathbb{R}^2 : Self-assessment sheet 1, Question 4.
- Space of bounded functions with uniform or supremum metric: [Shirali, Example 1.2.2(viii) (p. 31f)].

Lecture 6.10.

Chapter I: Definition & Examples (cont.)

- Definition metric subspace: [Shirali, (p. 28)].
- Space of continuous functions with supremum/maximum metric: [Shirali, Example 1.2.2(ix) (p. 32)].
- Definition product metrics d_1 , d_2 and d_∞ : they are called d, d' and d'' in [Shirali, Definition 6.2.2 & Remark 6.2.3(i) (p. 203f)].
- Definition of *isometry*: [Shirali, Definition 1.5.2 (p. 55)].
- Theorem I.3: Suppose Z is a set, (X,d) is a metric space and f: Z → X an injective function. Then, f and d induce a metric on Z, namely by (a,b) → d(f(a), f(b)). This metric makes Z an isometric copy of the metric subspace (f(Z), d) of (X, d) and f an isometry.

- Definition pseudometric space: [Shirali, Definition 1.2.5 (p. 36)].
- Examples of pseudometric spaces: see Exercise sheet 1, Questions 2(i) & 4(i).
- Proposition I.4: compare Exercise sheet 2, Question 1 & Self-assessment sheet 2, Question 3.

Chapter II: Sequences & Completions

- Definition convergent/divergent sequence & limit: [Shirali, Definition 1.3.2 (p. 38)].
- Theorem II.1: [Shirali, Remark 3 (p. 38)].
- Convergence depends on the space X and on the metric d: Consider the sequence $\left(\frac{1}{n}\right)$ in (0,1] and [0,1] (equipped with the usual metric) and in [0,1] equipped with the discrete metric.
- Theorem II.2 ("Convergence in product metric space = coordinatewise convergence"): Let (X_1, ρ_1) and (X_2, ρ_2) be two metric spaces. A sequence $((x_n, y_n)) \subset X_1 \times X_2$ converges to (x, y) iff $x_n \to x$ in X_1 and $y_n \to y$ in X_2 as $n \to \infty$. (implicit in [Shirali, Examples 1.3.3(ii) & (iii) (p. 38f)])
- Definition of equivalent metrics: [Shirali, Definition 3.5.4 (p. 120)].
- Definition of uniformly equivalent metrics: Two metrics d and \tilde{d} on X are uniformly equivalent if there are constants $C_1, C_2 > 0$ s.t. $\forall x, y \in X$ one has $C_1 \cdot d(x,y) \leq \tilde{d}(x,y) \leq C_2 \cdot d(x,y)$. (compare [Shirali, Theorem 3.5.6 (p. 121)])
- Theorem II.3: [Shirali, Example 3.5.7(i) (p. 121) & Remark 6.2.3(ii) (p. 204)].
- Definition of boundedness & diameter: [Shirali, Definition 2.1.41 (p. 76)].
- Remark: An unbounded metric space can be made into a bounded one, see [Shirali, Example 3.5.7(ii) (p. 121f)].
- Proposition II.4: see Exercise sheet 2, Question 5.

Lecture 13.10.

Chapter II: Sequences & Completions (cont.)

- Remark: No "monotone sequence theorem" on \mathbb{C} .
- Definition Cauchy sequence: [Shirali, Definition 1.4.1 (p. 45)].
- Proposition II.5: [Shirali, Proposition 1.4.3 (p. 46)].
- Proposition II.6: Every Cauchy sequence is bounded.
- Example: Harmonic series diverges.

- Proposition II.7: [Shirali, Proposition 1.4.7 (p. 48)].
- Remark: $(\frac{1}{n})$ in (0,1] and in [0,1].
- Definition *complete* metric space: [Shirali, Definition 1.4.5 (p. 47)].
- Theorem II.8: see [Shirali, Proposition 1.4.8 & Corollary 1.4.9 (p. 48f)].
- Theorem II.9: [Shirali, Propositions 1.4.12 & 1.4.13 (p. 51f)].
- Theorem II.10 (without proof): [Shirali, Theorem 1.5.3 (p. 55)].

Lecture 20.10.

Chapter III: Topology of a Metric Space

- Definition open and closed balls: [Shirali, Definition 2.1.1 (p. 64)]. Note: We are using the notation $B_r(x_0)$ and $\overline{B}_r(x_0)$ where [Shirali] uses $S(x_0, r)$ respectively $\overline{S}(x_0, r)$.
- Examples: [Shirali, Examples 2.1.2(i)–(iii) (p. 64f)].
- Definition neighbourhood: Let $x_0 \in X$ where (X, d) is a metric space. Then $U(x_0) \subset X$ is called a neighbourhood of x_0 in (X, d) if there exists an $\varepsilon > 0$ s.t. $B_{\varepsilon}(x_0) \subset U(x_0)$.

Note: This is **not** [Shirali, Definition 2.1.3 (p. 66)].

- Definition open set: [Shirali, Definition 2.1.4 (p. 66)].
- Theorem III.1: [Shirali, Theorem 2.1.5 (p. 66)].
- Theorem III.2: [Shirali, Theorem 2.1.7 (p. 67)].
- Remarks: [Shirali, Remark 2.1.8 & Theorem 2.1.9 (p. 67)].
- Side-remark: Topology & every metric space is a topological space (not examinable).
- Definition interior point and interior: [Shirali, Definition 2.1.12 (p. 69)].
- Remarks: [Shirali, Theorem 2.1.14 (p. 69)].
- Definition *limit point* and *derived set*: [Shirali, Definition 2.1.17 (p. 70)].
- Examples: [Shirali, Examples 2.1.18(i)–(iii) (p. 70)].
- Theorem III.3: [Shirali, Proposition 2.1.19 (p. 70)].
- Corollary III.4: (a) A finite subset of (X, d) has no limit points. (b) [Shirali, Proposition 2.1.20 (p. 71)].
- Definition *closed* set: [Shirali, Definition 2.1.21 (p. 71)].
- Proposition III.5: [Shirali, Proposition 2.1.23 (p. 71)].
- Definition *closure*: [Shirali, Definition 2.1.25 (p. 72)].

Lecture 27.10.

Chapter III: Topology of a Metric Space (cont.)

- Proposition III.6: [Shirali, Corollary 2.1.26 (p. 72)].
- Theorem III.7: [Shirali, Theorem 2.1.32 (p. 74)].
- Examples: see [Shirali, Example 2.1.22(iv) (p. 71)].
- Theorem III.8: [Shirali, Corollary 2.1.34 (p. 74)].
- Remark: [Shirali, Remark 2.1.35 (p. 75)].
- Theorem III.9: [Shirali, Theorem 2.12.33 (p. 74)].
- Definition boundary (or frontier): Let (X, d) be a metric space. Then the boundary ∂A (or $\operatorname{bd} A$) of a set $A \subset X$ is defined as $\partial A = \operatorname{cl} A \setminus \operatorname{int} A$.
- Examples: Boundary of [0,1], \mathbb{Q} and clopen sets.
- Proposition III.10: Let (X, d) be a metric space and $A \subset X$. Then, $\operatorname{cl}(A^c) = (\operatorname{int} A)^c$, $\operatorname{int}(A^c) = (\operatorname{cl} A)^c$ and $\partial A = \operatorname{cl} A \cap \operatorname{cl}(A^c) = \partial(A^c)$. In particular, ∂A is closed.
- Theorem III.11: see [Shirali, Proposition 2.1.28 (p. 72)].
- Theorem III.12: [Shirali, Theorem 2.2.2 (p. 80)].

Lecture 3.11.

Chapter IV: Continuity

- Definition *continuous* function: [Shirali, Definition 3.1.1 (p. 103f)].
- Theorem IV.1: [Shirali, Theorem 3.1.3 & Propositions 3.1.5 & 3.1.8 (p. 104ff)].
- Theorem IV.2: [Shirali, Theorems 3.1.9 & 3.1.10 (p. 106)].
- Remark (not examinable): open and closed functions, compare [Shirali, Questions 11 & 12 (p. 146)].
- Theorem IV.3: [Shirali, Theorem 3.1.11 (p. 107)].
- Theorem IV.4: see Exercise sheet 6 Question 2.
- Definition uniformly continuous function: [Shirali, Definition 3.4.1 (p. 114)].
- Theorem IV.5: see Exercise sheet 6 Question 3.

Lecture 10.11.

Chapter IV: Continuity (cont.)

- Theorem IV.6: see Remark after [Shirali, Definition 3.4.1 (p. 114)] and [Shirali, Theorem 3.4.6 (p. 117)].
- Examples: $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{1}{x}$ is continuous but not uniformly continuous; $h: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x+y$ is uniformly continuous; $g: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x \cdot y$ is continuous but not uniformly continuous.
- Theorem IV.7: (Uniform) continuity of $\frac{1}{f}$, (f+g) and $(f \cdot g)$ if $f, g : X \to \mathbb{R}$ are (uniformly) continuous (see M11).
- Theorem IV.8: [Shirali, Theorem 3.4.4 (p. 116)].
- Definition Lipschitz continuous: Let (X,d) and (Y,\tilde{d}) be metric spaces and $f: X \to Y$. If there exists a constant L > 0 s.t. $\tilde{d}(f(x),f(y)) \leq L \cdot d(x,y) \ \forall x,y \in X$, then we say that f is Lipschitz continuous with Lipschitz constant L.
- Proposition IV.9: A Lipschitz continuous function is uniformly continuous.
- Definition homeomorphism: [Shirali, Definition 3.5.1 (p. 119)].
- Remark: isometry, uniform isomorphism and Lipschitz isomorphism (not examinable).
- Example: (-1,1) and \mathbb{R} (both equipped with the usual metric) are homeomorphic (via $f(x) = \tan(\frac{\pi}{2}x)$).
- Proposition IV.10: see [Shirali, Remark 3.5.5 (p. 120)].
- Remark: metrics on \mathbb{R}^n , see [Shirali, Example 3.5.7(i) (p. 121)]

Lecture 17.11.

Chapter V: Contractions

- Theorem V.1: [Shirali, Propositions 2.2.5 & 2.2.6 (p. 81f)].
- Example: Theorem II.9 revisited.
- Definition dense subset: [Shirali, Definition 2.3.12 (p. 84f)].
- Example: [Shirali, Example 2.3.13(i) (p. 85)] and Theorem II.10 revisited.
- Definition *contraction*: [Shirali, Definition 3.7.1 (p. 132f)].
- Definition fixed point: [Shirali, Definition 3.7.3 (p. 133)].
- Theorem V.2 (Banach's Contraction Mapping Principle, Banach's Fixed Point Theorem): [Shirali, Theorem 3.7.4 (p. 133f)].

- Remark: see [Shirali, Remark 3.7.5 (p. 134)].
- Example: Hausdorff metric and Cantor set, see Question 5 on Exercise sheet 8.
- Definition solution of a initial value problem: [Shirali, Definition 3.7.8 (p. 137)].
- Definition Lipschitz condition: We say that f satisfies a Lipschitz condition if $\exists M > 0 \text{ s.t. } |f(t,x) f(t,y)| \leq M |x-y| \ \forall (t,x), (t,y) \in R.$
- Remarks: see [Shirali, Proposition 3.7.11 (p. 138f)] and uniform equivalence of the metrics $d_{\max,\beta}(g_1,g_2) = \max_{t \in I} |g_1(t) g_2(t)| e^{-\beta t}$ and d_{\max} .
- Theorem V.3 (*Picard's Theorem*): compare [Shirali, Theorem 3.7.12 (p. 139f)].

Lecture 24.11.

Chapter VI: Compactness

Note: Unfortunately, [Shirali] does not distinguish between compactness and sequential compactness!

- Definition *compact* metric space and *compact* set: [Shirali, Definition 5.1.1 (p. 171)].
- Examples: \mathbb{R} , (-1,1) are not compact.
- Definition (finite) r-net: [Shirali, Definition 5.1.7 (p. 173)].
- Definition total boundedness: [Shirali, Definition 5.1.8 (p. 174)].
- Proposition VI.1: [Shirali, Proposition 5.1.10 (p. 175)].
- Theorem VI.2: [Shirali, Theorem 5.1.12 (p. 175f)].
- Corollary VI.3: Let (X, d), (Y, \tilde{d}) be metric spaces. If $f: X \to Y$ is a surjective uniformly continuous function and X is totally bounded, then Y is totally bounded (and hence also bounded).
- Definition sequentially compact: Suppose that (X,d) is a metric space. A subset $K \subset X$ is said to be sequentially compact if any sequence $(x_n) \subset K$ has a subsequence which converges to a point in X.
- Theorem VI.4: see [Shirali, Theorem 5.1.17 (i.e., Propositions 5.1.13 & 5.1.14, Theorem 5.1.16) (p. 176ff)].
- Proposition VI.5: [Shirali, Corollaries 5.2.4 & 5.2.5 (p. 180)].
- Proposition VI.6 (Heine-Borel Theorem): see [Shirali, Remark 5.1.11 & Section 5.5(d) (p. 175 & 194)]
- Proposition VI.7: Let A_1 , A_2 be nonempty subsets of a sequentially compact metric space (X, d). Then $\exists x \in \operatorname{cl} A_1 \text{ and } y \in \operatorname{cl} A_2 \text{ s.t. } \operatorname{dist}(A_1, A_2) = d(x, y)$.
- Theorem VI.8: [Shirali, Theorem 5.3.10 (p. 184)].

Lecture 1.12.

Chapter VI: Compactness

- Theorem VI.9: Suppose that $f:(X,d)\to (Y,\tilde{d})$ is continuous and $K\subset X$ is sequentially compact. Then f(K) is sequentially compact.
- Theorem VI.10: [Shirali, Theorem 5.3.8 (p. 183f)].
- Theorem VI.11: see [Shirali, Theorems 5.2.2 & 5.2.3 (p. 179f)].

Chapter VII: Connectedness

- Definition disconnected & connected: see [Shirali, Definition 4.1.1 & Theorem 4.1.3 (p. 156f)]
 - *Note:* We are using the equivalent condition [Shirali, Theorem 4.1.3(ii)] as definition for being *disconnected*.
- Proposition VII.1 & Corollary VII.2: [Shirali, Theorem 4.1.3 (p. 157f)].
- Proposition VII.3: [Shirali, Theorem 4.1.6 & Corollary 4.1.7 (p. 159)].
- Examples: [Shirali, Examples 4.1.2(ii) & (iii) (p. 157)].
- Theorem VII.4: [Shirali, Theorem 4.1.13 (p. 161)].
- Theorem VII.5: [Shirali, Theorem 4.1.4 (p. 158)].
- Theorem VII.6: [Shirali, Theorem 4.1.8 (p. 159f)].
- Definition path connected: [Shirali, Definition 4.3.1 (p. 165)].
- Theorem VII.7: [Shirali, Theorem 4.3.4 (p. 166)].
- Example: [Shirali, Example 4.3.2(i) (p. 165)].

References

[Shirali] S. Shirali & H.L. Vasudeva: Metric Spaces; Springer (2006); library: ebook