## MA30041: Metric Spaces

## Proof of Theorem VII. 5

Theorem VII.5. A subset $I \subset \mathbb{R}$ is connected iff $I$ is an interval ${ }^{1}$.

Proof: " $\Rightarrow$ ": If $I=\varnothing=(x, x)$ or $I=\{x\}=[x, x]$, then there is nothing to prove. So we can assume that $I$ contains at least two points.

We use contraposition, so assume that $I$ is not an interval. Set $a=\inf I$ and $b=\sup I$, and note that $-\infty \leq a<b \leq \infty$. Suppose for simplicity (why can we do that?) that $a, b \notin I$, i.e., $I \subset(a, b)$. Since $I \neq(a, b)$, there is an $x \in(a, b)$ s.t. $x \notin I$. By the definition of infimum and supremeum $I \cap(a, x) \neq \varnothing$ and $I \cap(x, b) \neq \varnothing$. Also note that $I \subset(a, x) \cup(x, b)$ (two nonempty disjoint open sets!). Hence, $I$ is disconnected.
$" \Leftarrow$ ": Seeking a contradiction, let $I$ be an interval which is disconnected. Then there are nonempty disjoint open sets $U, V \subset \mathbb{R}$ s.t. $U \cap I \neq \varnothing, V \cap I \neq \varnothing$ and $I \subset U \cup V$. So, $G_{1}=I \cap U$ and $G_{2}=I \cap V$ are open in $I$, nonempty disjoint sets s.t. $I=G_{1} \cup G_{2}$. Let $x_{1} \in G_{1}$ and $x_{2} \in G_{2}$. W.l.o.g. we may assume that $x_{1}<x_{2}$. Since $I$ is an interval, it follows that $\left(x_{1}, x_{2}\right) \subset I$. Let $A \subset I$ be defined by

$$
A=\left\{z \in I \mid\left(x_{1}, z\right) \subset G_{1}\right\} .
$$

Since $G_{1}$ is open in $I$, it follows that $A \neq \varnothing$. Since $G_{2}$ is open in $I$, we conclude that $x_{2} \notin A$. So, $A$ is bounded above by some $c<x_{2}$. Thus, $y=\sup A$ is a finite number that belongs to $\left(x_{1}, c\right] \subset I$. Two cases are possible: either $y \in G_{1}$ or $y \in G_{2}$ :

- Suppose $y \in G_{1}$. Since $y>x_{1}$ and $G_{1}$ is open, there is a $\delta>0$ s.t. $y-\delta>x_{1}$ and $(y-\delta, y+\delta) \subset G_{1}$. Since $y=\sup A$, we have $\left(x_{1}, y-\frac{\delta}{2}\right) \subset G_{1}$ and thus $\left(x_{1}, y+\delta\right)=\left(x_{1}, y-\frac{\delta}{2}\right) \cup(y-\delta, y+\delta) \subset G_{1}$. But then $y \neq \sup A$. Thus, this case is not possible.
- Suppose $y \in G_{2}$. Then, since $G_{2}$ is open, there is a $\delta>0$ s.t. $(y-\delta, y+\delta) \subset G_{2}$. But then $\left(y-\delta, y-\frac{\delta}{2}\right) \subset G_{1}$, hence $G_{1} \cap G_{2} \neq \varnothing$, a contradiction.

[^0]
[^0]:    ${ }^{1} I \subset \mathbb{R}$ is called an interval if when $x, y \in I$ with $x<y$, then $z \in I$ for all $x<z<y$, i.e., $(x, y) \subset I$.

