MA30041: Metric Spaces

Proor or THEOREM VII.5

Theorem VIL.5. A subset I C R is connected iff I is an interval.

Proof: “=7: If | = @ = (x,x) or I = {x} = [z, ], then there is nothing to prove. So
we can assume that I contains at least two points.

We use contraposition, so assume that [ is not an interval. Set @ = inf I and b = sup I,
and note that —oo < a < b < 0o. Suppose for simplicity (why can we do that?) that
a,b & I, ie., I C (a,b). Since I # (a,b), there is an = € (a,b) s.t. x ¢ I. By the
definition of infimum and supremeum I N (a,z) # @ and I N (z,b) # &. Also note that
I C (a,z)U(z,b) (two nonempty disjoint open sets!). Hence, I is disconnected.

“<": Seeking a contradiction, let I be an interval which is disconnected. Then there
are nonempty disjoint open sets U,V C Rst. UNI #@VNI#@and C UUV.
So, Gy =1NU and Gy = I NV are open in I, nonempty disjoint sets s.t. [ = G U Gs.
Let 1 € Gy and x5 € Gy. W.l.o.g. we may assume that xz; < x,. Since [ is an interval,
it follows that (zq,29) C I. Let A C I be defined by

A={z¢el|(x1,2) C Gy}

Since G is open in [, it follows that A # &. Since G5 is open in I, we conclude that
xo & A. So, A is bounded above by some ¢ < x5. Thus, y = sup A is a finite number
that belongs to (z1,c] C I. Two cases are possible: either y € Gy or y € Ga:

e Suppose y € G1. Since y > 7 and Gy is open, thereisa d > 0s.t. y —d > 21
and (y — 0,y +0) C G1. Since y = sup A, we have (xl,y — g) C G; and thus
(z1,y+6) = (z1,y — 2) U(y — 6,y +0) C Gy. But then y # sup A. Thus, this case
is not possible.

e Suppose y € Gy. Then, since G, is open, thereisa § > 0 s.t. (y —d,y +9) C Gs.
But then (y -0,y — g) C (G, hence G; NGy # I, a contradiction. O

LI C R is called an interval if when z,y € I with x <y, then 2z € I for all z < z < y, i.e., (x,y) C I.



