MA30041: Metric Spaces

PROOF OF THEOREM VII.5

Theorem VII.5. A subset $I \subset \mathbb{R}$ is connected iff I is an interval¹.

Proof: " \Rightarrow ": If $I = \emptyset = (x, x)$ or $I = \{x\} = [x, x]$, then there is nothing to prove. So we can assume that I contains at least two points.

We use contraposition, so assume that I is not an interval. Set $a = \inf I$ and $b = \sup I$, and note that $-\infty \leq a < b \leq \infty$. Suppose for simplicity (why can we do that?) that $a, b \notin I$, i.e., $I \subset (a, b)$. Since $I \neq (a, b)$, there is an $x \in (a, b)$ s.t. $x \notin I$. By the definition of infimum and supremeum $I \cap (a, x) \neq \emptyset$ and $I \cap (x, b) \neq \emptyset$. Also note that $I \subset (a, x) \cup (x, b)$ (two nonempty disjoint open sets!). Hence, I is disconnected.

" \Leftarrow ": Seeking a contradiction, let I be an interval which is disconnected. Then there are nonempty disjoint open sets $U, V \subset \mathbb{R}$ s.t. $U \cap I \neq \emptyset, V \cap I \neq \emptyset$ and $I \subset U \cup V$. So, $G_1 = I \cap U$ and $G_2 = I \cap V$ are open in I, nonempty disjoint sets s.t. $I = G_1 \cup G_2$. Let $x_1 \in G_1$ and $x_2 \in G_2$. W.l.o.g. we may assume that $x_1 < x_2$. Since I is an interval, it follows that $(x_1, x_2) \subset I$. Let $A \subset I$ be defined by

$$A = \{ z \in I \mid (x_1, z) \subset G_1 \}.$$

Since G_1 is open in I, it follows that $A \neq \emptyset$. Since G_2 is open in I, we conclude that $x_2 \notin A$. So, A is bounded above by some $c < x_2$. Thus, $y = \sup A$ is a finite number that belongs to $(x_1, c] \subset I$. Two cases are possible: either $y \in G_1$ or $y \in G_2$:

- Suppose $y \in G_1$. Since $y > x_1$ and G_1 is open, there is a $\delta > 0$ s.t. $y \delta > x_1$ and $(y - \delta, y + \delta) \subset G_1$. Since $y = \sup A$, we have $(x_1, y - \frac{\delta}{2}) \subset G_1$ and thus $(x_1, y + \delta) = (x_1, y - \frac{\delta}{2}) \cup (y - \delta, y + \delta) \subset G_1$. But then $y \neq \sup A$. Thus, this case is not possible.
- Suppose $y \in G_2$. Then, since G_2 is open, there is a $\delta > 0$ s.t. $(y \delta, y + \delta) \subset G_2$. But then $(y - \delta, y - \frac{\delta}{2}) \subset G_1$, hence $G_1 \cap G_2 \neq \emptyset$, a contradiction.

¹ $I \subset \mathbb{R}$ is called an *interval* if when $x, y \in I$ with x < y, then $z \in I$ for all x < z < y, i.e., $(x, y) \subset I$.