
MA30041: Metric Spaces

Proof of Theorem VII.5

Theorem VII.5. A subset I ⊂ R is connected iff I is an interval1.

Proof: “⇒”: If I = ∅ = (x, x) or I = {x} = [x, x], then there is nothing to prove. So
we can assume that I contains at least two points.

We use contraposition, so assume that I is not an interval. Set a = inf I and b = sup I,
and note that −∞ ≤ a < b ≤ ∞. Suppose for simplicity (why can we do that?) that
a, b 6∈ I, i.e., I ⊂ (a, b). Since I 6= (a, b), there is an x ∈ (a, b) s.t. x 6∈ I. By the
definition of infimum and supremeum I ∩ (a, x) 6= ∅ and I ∩ (x, b) 6= ∅. Also note that
I ⊂ (a, x) ∪ (x, b) (two nonempty disjoint open sets!). Hence, I is disconnected.

“⇐”: Seeking a contradiction, let I be an interval which is disconnected. Then there
are nonempty disjoint open sets U, V ⊂ R s.t. U ∩ I 6= ∅,V ∩ I 6= ∅ and I ⊂ U ∪ V .
So, G1 = I ∩ U and G2 = I ∩ V are open in I, nonempty disjoint sets s.t. I = G1 ∪G2.
Let x1 ∈ G1 and x2 ∈ G2. W.l.o.g. we may assume that x1 < x2. Since I is an interval,
it follows that (x1, x2) ⊂ I. Let A ⊂ I be defined by

A = {z ∈ I | (x1, z) ⊂ G1}.

Since G1 is open in I, it follows that A 6= ∅. Since G2 is open in I, we conclude that
x2 6∈ A. So, A is bounded above by some c < x2. Thus, y = supA is a finite number
that belongs to (x1, c] ⊂ I. Two cases are possible: either y ∈ G1 or y ∈ G2:

• Suppose y ∈ G1. Since y > x1 and G1 is open, there is a δ > 0 s.t. y − δ > x1

and (y − δ, y + δ) ⊂ G1. Since y = supA, we have
(
x1, y − δ

2

)
⊂ G1 and thus

(x1, y+ δ) =
(
x1, y − δ

2

)
∪ (y− δ, y+ δ) ⊂ G1. But then y 6= supA. Thus, this case

is not possible.

• Suppose y ∈ G2. Then, since G2 is open, there is a δ > 0 s.t. (y − δ, y + δ) ⊂ G2.
But then

(
y − δ, y − δ

2

)
⊂ G1, hence G1 ∩G2 6= ∅, a contradiction. �

1 I ⊂ R is called an interval if when x, y ∈ I with x < y, then z ∈ I for all x < z < y, i.e., (x, y) ⊂ I.


