## MA30041: Metric Spaces

## Old Exams 9: Connectedness

1.) From the 2004/05-exam:
(a) Let $(X, d)$ be a metric space and $A \subset X$.
(i) What is meant by a path in $(X, d)$ joining $x$ to $y$ ?
(ii) When is $A \subset X$ said to be connected?
(iii) When is $A \subset X$ said to be path-connected?
(iv) Does connectedness imply path-connectedness, or does path-connectedness imply connectedness. Are they in fact equivalent?
(b) Suppose that $A$ is a connected subset of $(X, d)$ and that $f$ is a continuous function from $(X, d)$ to $(Y, \tilde{d})$. Show that $f(A)$ is connected in $(Y, \tilde{d})$.
[State explicitly how you characterize continuity of functions between metric spaces.]
(c) Let $\left(C[0,1], d_{\max }\right)$ denote the usual metric space of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ with

$$
d_{\max }(f, g)=\max _{x \in[0,1]}|f(x)-g(x)|, \quad f, g \in C[0,1]
$$

Let $f_{0}, g_{0} \in C[0,1]$ be functions with $f_{0}(x) \leq g_{0}(x)$ for all $x \in[0,1]$ and let

$$
A=\left\{f \in C[0,1] \mid f_{0}(x) \leq f(x) \leq g_{0}(x), x \in[0,1]\right\}
$$

Show that $A$ is path-connected in $\left(C[0,1], d_{\max }\right)$.

