MA30041: Metric Spaces

OLD EXAMS 7: CONTRACTIONS

1.) From the 2006/07-exam:

- (a) What is a contraction mapping on a metric space (X, d)?
- (b) State, without proof, Banach's contraction mapping principle.
- (c) Suppose that (X, d) is complete, $f: X \to X$ is a contraction mapping and that $A \subset X$ is nonempty and closed in (X, d) with $f(A) \subset A$. Show that A contains the fixed point of f.
- (d) Show, by example, that the conclusion of (c) may be false if A is not closed.

2.) From the 2003/04-exam:

Let X = C[0,1] equipped with the uniform metric d_{max} . Show that $T: X \to X$ defined by

$$T(f)(x) = \frac{1}{2} \left(\int_0^x f(t) dt \right) + 1$$

for $x \in [0,1]$ and all $f \in X$, defines a contraction on (X, d_{max}) . Determine the limit of the sequence $(f_n) \subset X$ defined by

$$f_1 \equiv 0, \quad f_{n+1} = T(f_n) \forall n \in \mathbb{N}.$$