MA30041: Metric Spaces

OLD EXAMS 4: TOPOLOGY

- 1.) From the 2004/05-exam:
 - (a) Let (X, d) be a metric space. Give precise definitions of the following.
 - (i) $B_r(x)$ where $x \in X$ and r > 0.
 - (ii) int A, where $A \subset X$.
 - (iii) A limit point of $A \subset X$.
 - (iv) cl A, where $A \subset X$.
 - (v) A closed set in (X, d).
 - (vi) An *open* set in (X, d).
 - (b) Let (X, d) be a metric space. Show that, for every $A \subset X$, (int A)^c = cl (A^{c}) and deduce that the complement of every open set is a closed set.
- 2.) From the 2006/07-exam:
 - (i) What is an *interior point* of a set A in a metric space (X, d)?
 - (ii) What is a *limit point* of a set A in a metric space (X, d)?
 - (iii) Denote the set of limit points of A by A' and the set of interior points of A by int A. Show that, for any set $U \subset X$, int $U = U \setminus (U^c)'$.
 - (iv) Deduce that a set U is open in (X, d) if it contains no limit points of its complement.