MA30041: Metric Spaces

OLD EXAMS 3: CAUCHY SEQUENCES & COMPLETENESS

1.) From the 2003/04-exam:

Prove that if C[0,1] is endowed with the supremum (or uniform) metric

$$d(f,g) = \sup_{t \in [0,1]} |f(t) - g(t)| \qquad \forall f, g \in C[0,1],$$

then (C[0,1],d) is a complete metric space.

2.) From the 2006/07-exam:

- (a) (i) State the triangle-inequality axiom for a metric space (X, d)?
 - (ii) Suppose that $x, y \in X$ where (X, d) is a metric space and d(x, y) = 2r. Prove that $B_r(x) \cap B_r(y) = \emptyset$.
- (b) Suppose that (X, d) is a metric space and let

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}, \quad \forall x, y, \in X.$$

Show that \tilde{d} satisfies the triangle-inequality axiom for a metric space.