MA10103: Foundation Mathematics I

Solutions of Problem Sheet 9 (Assessed Coursework)

1. Use $\cos^2 A = 1 - \sin^2 A$ (respectively $\sin^2 A = 1 - \cos^2 A$) in double angle identity to get

 $\cos(2A) \stackrel{[1]}{=} 2\cos^2 A - 1$ and $\cos(2A) \stackrel{[1]}{=} 1 - 2\sin^2 A$.

Thus,

 $\cos A \stackrel{\left[\frac{1}{2}\right]}{=} \pm \sqrt{\frac{1 + \cos(2A)}{2}} \quad \text{and} \quad \sin A \stackrel{\left[\frac{1}{2}\right]}{=} \pm \sqrt{\frac{1 - \cos(2A)}{2}}.$

With $A = 22.5^{\circ}$, we have the plus-sign in both cases [1] and obtain

$$\sin 22.5^{\circ} \stackrel{[\frac{1}{2}]}{=} \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} \stackrel{[\frac{1}{2}]}{=} \frac{\sqrt{2 - \sqrt{2}}}{2} \stackrel{[\frac{1}{2}]}{=} 0.383 \ (3 \text{ d.p.}) \quad \text{and}$$
$$\cos 22.5^{\circ} \stackrel{[\frac{1}{2}]}{=} \sqrt{\frac{1 + \frac{\sqrt{2}}{2}}{2}} \stackrel{[\frac{1}{2}]}{=} \frac{\sqrt{2 + \sqrt{2}}}{2} \stackrel{[\frac{1}{2}]}{=} 0.924 \ (3 \text{ d.p.}).$$

Or simply have $A = 22.5^{\circ}$ and $2A = 45^{\circ}$ in all calculations above.

2. Complete the square:

3. Equation of circle: $(x + 2)^2 + y^2 = 4^2$ [1]. Substituting equation of line into circle yields

$$16 = (x+2)^2 + (x-1)^2 \stackrel{[1]}{=} 2x^2 + 2x + 5.$$

Solution of the quadratic equation $2x^2 + 2x - 11 = 0$:

$$x \stackrel{[\frac{1}{2}]}{=} \frac{-2 \pm \sqrt{4 + 88}}{4} \stackrel{[\frac{1}{2}]}{=} -\frac{1}{2} \pm \frac{\sqrt{23}}{2}.$$

So, points of intersection are $\left(-\frac{1}{2} - \frac{\sqrt{23}}{2}, -\frac{3}{2} - \frac{\sqrt{23}}{2}\right)$ and $\left(-\frac{1}{2} + \frac{\sqrt{23}}{2}, -\frac{3}{2} + \frac{\sqrt{23}}{2}\right)$. [1]

Please turn over!

- 4. Sketch of $y = \frac{1}{x^2}$: asymptotes x = 0 and y = 0 [1], symmetrical (even function) & positive [1], shape [1]
 - Sketch of $y = -\frac{1}{4}x$: straight line (odd function) [1]
 - Sketch of $y = -\frac{1}{4}x + \frac{1}{x^2}$: asymptotes x = 0 and $y = -\frac{1}{4}x$ [1], *x*-intercept at $(\sqrt[3]{4}, 0) \approx (1.587, 0)$ [1], shape (e.g., local minimum at $(-2, \frac{3}{4})$) [2]

- 5. Derivative of $f(x) = 3x^2 1$ is f'(x) = 6x [1], so the gradient of the tangent at (1,2) is f'(1) = 6 [1]. Equation of tangent [1]: y = 6x - 4.
- 6. (a) With $y = x^3 + x^5$, we get $\frac{dy}{dx} = 3x^2 + 5x^4$ [2]. (b) With $y = x^{1/5} + x^7 + x^{-2}$ [1], we get $\frac{dy}{dx} = \frac{1}{5}x^{-4/5} + 7x^6 - 2x^{-3}$ [3].
- 7. *P* has coordinates (1,0) $[\frac{1}{2}]$. Derivative $\frac{dy}{dx} = 1 + \frac{1}{3}x^{-4/3}$ [1], so gradient of tangent at *P* is $\frac{4}{3}$ [1] and that of normal is $-\frac{3}{4}$ $[\frac{1}{2}]$. Equation of tangent is $y = \frac{4}{3}x - \frac{4}{3}$ [1]; equation of normal is $y = -\frac{3}{4}x + \frac{3}{4}$ [1].
- 8. Using abbreviations R (Royal Crescent), C (Circus), T (Theatre) and G (Guildhall).
 Angle at R (⊲TRC) is 45°, angle at G (⊲TGC) is 50°. [1]
 Use sine-rule to calculate distances |RC| and |CG| (or, alternatively, |RT| and |TG|): [1]

$$|RC| \stackrel{[1]}{=} 440 \text{ m} \times \frac{\sin 20^{\circ}}{\sin 45^{\circ}} = 212.82 \text{ m} (2 \text{ d.p.}) \text{ and} |CC| \stackrel{[1]}{=} 440 \text{ m} \times \frac{\sin 95^{\circ}}{\sin 50^{\circ}} = 572.19 \text{ m} (2 \text{ d.p.})$$

Please turn over!

Use cosine-rule to calculate $\left| RG \right|$ via

$$|RG|^{2} \stackrel{[1]}{=} |RC|^{2} + |CG|^{2} - 2 |RC| |CG| \cos(115^{\circ} + 35^{\circ}),$$

which yields $|RG| = 764 \text{ m} (0 \text{ d.p.}).$ [1]

(alternatively,

$$|RT| = 440 \text{ m} \times \frac{\sin 115^{\circ}}{\sin 45^{\circ}} = 563.95 \text{ m} (2 \text{ d.p.}) \text{ and}$$

 $|TG| = 440 \text{ m} \times \frac{\sin 35^{\circ}}{\sin 50^{\circ}} = 329.45 \text{ m} (2 \text{ d.p.})$

then |RG| via

$$|RG|^{2} = |RT|^{2} + |TG|^{2} - 2|RT||TG||\cos(95^{\circ} + 20^{\circ}),$$

which again yields |RG| = 764 m (0 d.p.).)

Total: [45]