MA10103: Foundation Mathematics I

SOLUTIONS OF PROBLEM SHEET 5

- 1. $x^2 + x 6 = 0$: $x = \frac{-1 \pm 5}{2} = 2$ or -3; $2x^2 + 1 = -3x$: $x = \frac{-3 \pm 1}{4} = -1$ or $-\frac{1}{2}$; $6x^2 = 7x + 3$: $x = \frac{7 \pm 11}{12} = \frac{3}{2}$ or $-\frac{1}{3}$; $-4x^2 + 12x 9 = 0$: $x = \frac{-12 \pm 0}{-8} = \frac{3}{2}$ (only one solution); $x^2 3x 3 = 0$: $x = \frac{3 \pm \sqrt{21}}{2}$.
- 2. $x^2 + bx + c = 0$ has exactly one solution if $b^2 = 4 \times c$. $2x^2 + bx = -9$ has one solution if $b^2 - 72 = 0$, i.e., if $b = \pm 6\sqrt{2}$. It has two solutions if $b^2 - 72 > 0$, i.e., if $b > 6\sqrt{2}$ or if $b < -6\sqrt{2}$.
- 3. $x^2 + 5x + c = 0$ has no real solutions if 25 4c < 0, i.e., if $c > \frac{25}{4} = 6.25$. So, for c = 7 or c = 10 or etc. the equation has no real solutions.
- 4*. (a) $x^2 + 3x + 1 = 0$: $x = \frac{-3 \pm \sqrt{5}}{2}$, i.e., $x = \frac{-3 + \sqrt{5}}{2} = -0.382$ (3 d.p.) or $x = \frac{-3 \sqrt{5}}{2} = -2.618$ (3 d.p.); $x^2 x 6 = 0$: $x = \frac{1 \pm 5}{2} = 3$ or -2
 - (b) $4^x + 3 \times 2^x + 1 = 0$: set $y = 2^x$, then $y^2 + 3y + 1 = 0$. This is the first equation in (a) and has solutions $y = \frac{-3+\sqrt{5}}{2}$. However, these solutions for y are negative, while 2^x is positive for any real number x. Thus, there is no solution for $4^x + 3 \times 2^x + 1 = 0$.
 - $9^x 3^x 6 = 0$: set $y = 3^x$, then $y^2 3y 6 = 0$. This is the second equation in (a) and has solutions y = 3 and y = -2. As before, 3^x is positive for any real number x, so we only have to consider the solution y = 3. Hence, $3^x = 3$ and therefore x = 1. The result is: $9^x 3^x 6 = 0$ has one solution, namely x = 1.
 - (c) $x^4 + 3x^2 + 1 = 0$: set $y = x^2$, then $y^2 + 3y + 1 = 0$. This is the first equation in (a) and has solutions $y = \frac{-3+\sqrt{5}}{2}$. Both are negative, while the square of any real number x is positive. Thus, there are no real solutions for this equation.
 - $x^4 x^2 6 = 0$: set $y = x^2$, then $y^2 3y 6 = 0$. This is the second equation in (a) and has solutions y = 3 and y = -2. Again, we only have to care about the positive solution. Therefore, we have to solve $x^2 = 3$ which has solutions $x = \pm \sqrt{3}$. So, $x^4 x^2 6 = 0$ has the two solutions $x = \sqrt{3}$ and $x = -\sqrt{3}$.

Please turn over!

- 5*. (a) x 2y = -7 and -2x + 3y = 9: x = 3 and y = 5.
 - (b) 3x + 2y = -6 and x + y = 1: x = -8 and y = 9.
 - (c) xy = 1 and x + y 3 = 0: setting y = 3 x, solutions of $-x^2 + 3x 1 = 0$ are $x = \frac{3 \pm \sqrt{5}}{2}$. Get solutions $x = \frac{3 + \sqrt{5}}{2}$, $y = \frac{3 \sqrt{5}}{2}$ and $x = \frac{3 \sqrt{5}}{2}$, $y = \frac{3 + \sqrt{5}}{2}$.
 - (d) x + y = 2 and $y^2 x^2 = 8$: setting y = 2 x, solution of 4 4x = 8 is x = -1. But then y = 3, and the solution is x = -1 and y = 3.
 - (e) 2x y = 2 and $x^2 y = 5$: setting y = 2x 2, solutions of $x^2 2x 3 = 0$ are $x = \frac{2\pm 4}{2} = 3$ or -1. So, solutions are x = 3, y = 4 and x = -1, y = -4.
- 6. Set $z = \log_2 x$.

Solve z + 3y = 5 and $z^2 + y(y - 1) = 3$: setting z = 5 - 3y, one obtains the equation $3 = (5 - 3y)^2 + y(y - 1) = 25 - 31y + 10y^2$ and hence $10y^2 - 31y + 22 = 0$. This has solutions $y = \frac{31 \pm 9}{20} = 2$ or 1.1. Hence, z = -1, y = 2 and z = 1.7 and y = 1.1 are solutions of z + 3y = 5 and $z^2 + y(y - 1) = 3$. Using $z = \log_2 x$ and therefore $2^z = x$, one therefore gets: $x = \frac{1}{2}$, y = 2 and $x = 2^{1.7}$, y = 1.1 (one has $2^{1.7} = 3.249$ (3 d.p.)).

- 7*. $\sin \theta = 1$: $\theta = \frac{\pi}{2}$; $\cos \theta = -1$: $\theta = \pi$; $\sin \theta = 1/2$: $\theta = \frac{\pi}{6}, \frac{5\pi}{6}, 2\pi + \frac{\pi}{6} = \frac{13\pi}{6}$ and $2\pi + \frac{5\pi}{6} = \frac{17\pi}{6}$; $\tan \theta = 1$: $\theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}$ and $\frac{13\pi}{4}$.
- 8. (a) $20^{\circ} = \frac{\pi}{9}$ radians; $70^{\circ} = \frac{7\pi}{18}$ radians; $105^{\circ} = \frac{7\pi}{12}$ radians; $288^{\circ} = \frac{8\pi}{5}$ radians; $348^{\circ} = \frac{29\pi}{15}$ radians.
 - (b) $\frac{1}{3}\pi$ radians = 60°; $\frac{6}{5}\pi$ radians = 216°; $\frac{15}{4}\pi$ radians = 675°; $\frac{7}{8}\pi$ radians = 157.5°; $\frac{5}{3}\pi$ radians = 300°.
 - (c) $\sin 22^{\circ} = 0.3746 \text{ (4 d.p.)}; \quad \cos \left(\frac{3}{7}\pi\right) = 0.2225 \text{ (4 d.p.)}; \\ \sin 108^{\circ} = 0.9511 \text{ (4 d.p.)}; \quad \sin \left(\frac{2\pi}{9}\right) = 0.6427 \text{ (4 d.p.)}; \\ \tan \left(\frac{2}{5}\pi\right) = 3.0777 \text{ (4 d.p.)}.$