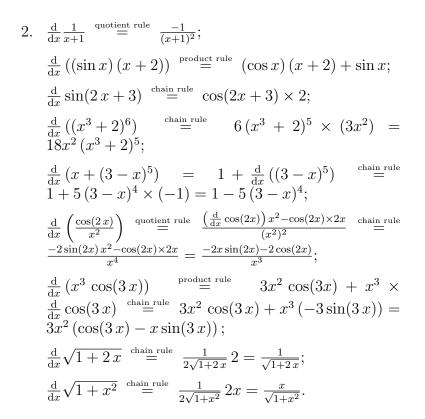
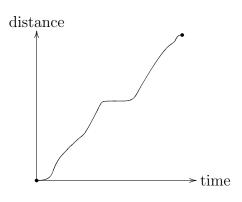
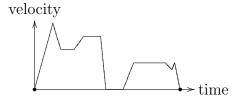
MA10103: Foundation Mathematics I

SOLUTIONS OF PROBLEM SHEET 10

1. See right column (only a suggestion).



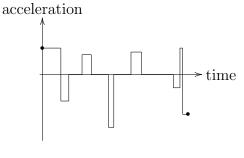




3.* $f(x) = (x^2 + 1)^{10}$: Using the chain rule with $g(x) = x^{10}$ and $h(x) = x^2 + 1$ (wherefore $g'(x) = 10x^9$, h'(x) = 2x and furthermore $f'(x) = g'(h(x)) \times h'(x)$) one obtains

$$f'(x) = 10(x^2 + 1)^9 2x = 20x(x^2 + 1)^9.$$

Moreover, $f'(1) = 20 \times 1 \times (1^2 + 1)^9 = 20 \times 2^9 = 10240$.



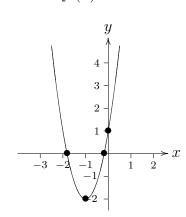
4.* $g(x) = \sin((x^2 + 1)^9)$: Using the chain rule with $f(x) = \sin x$ and $h(x) = (x^2 + 1)^9$ (wherefore $f'(x) = \cos x$ and – compare previous question – also $h'(x) = 18x(x^2 + 1)^8$) and thus g(x) = f(h(x)) one obtains:

$$g'(x) = \cos((x^2 + 1)^9) \times 18x(x^2 + 1)^8$$
.

Please turn over!

- 5. (a) Completing the square: $y = 3x^2 + 4x 3 = 3(x^2 + \frac{4}{3}x 1) = 3((x + \frac{2}{3})^2 (\frac{2}{3})^2 1) = 3(x + \frac{2}{3})^2 \frac{13}{3}$. So, the lowest point is $(-\frac{2}{3}, -\frac{13}{3})$.
 - (b) Derivative: $\frac{dy}{dx} = 6x + 4$. So, stationary point for 6x + 4 = 0, i.e., for $x = -\frac{2}{3}$. Calculating corresponding y-value: $y = 3(-\frac{2}{3})^2 + 4 \times (-\frac{2}{3}) - 3 = -\frac{13}{3}$. Again, the lowest point is $(-\frac{2}{3}, -\frac{13}{3})$.
- 6.* (a) $f'(x) = 3x^2 + 6x + 1$. y-intercept of f': (0,1). x-intercept of f': Solve $3x^2 + 6x + 1 = 0$ with solution formula, so $x = \frac{-6 \pm \sqrt{36 - 12}}{6} = -1 \pm \sqrt{\frac{2}{3}}$. Thus, x-intercepts are $(-1 - \sqrt{\frac{2}{3}}, 0)$ and at $(-1 + \sqrt{\frac{2}{3}}, 0)$.

Stationary point of f': Calculate derivative of f'. This is f''(x) = 6x + 6. Stationary point when 6x+6=0, so at x=-1. We have a minimum of f'(x) at (-1,-2).



Sketch of $f'(x) = 3x^2 + 6x + 1$:

(b) x-coordinates of the stationary points of y = f(x) are the x-intercepts of f'(x). So, stationary points are at $x = -1 \pm \sqrt{\frac{2}{3}}$, i.e., stationary points are $(-1 - \sqrt{\frac{2}{3}}, f(-1 - \sqrt{\frac{2}{3}})) \approx (-1.8165, 2.0887)$ and $(-1 + \sqrt{\frac{2}{3}}, f(-1 + \sqrt{\frac{2}{3}})) \approx (-0.1835, -0.0887)$.

f(x) is increasing if f'(x) is positive, thus it is increasing for $x < -1 - \sqrt{\frac{2}{3}}$ and for $x > -1 + \sqrt{\frac{2}{3}}$.

It is decreasing if f'(x) is negative, so for $-1 - \sqrt{\frac{2}{3}} < x < -1 + \sqrt{\frac{2}{3}}$.

So, stationary point at $x = -1 - \sqrt{\frac{2}{3}}$ is maximum, while the one at $x = -1 + \sqrt{\frac{2}{3}}$ is a minimum.

(c) y-intercept at origin (0,0).

Please turn over!

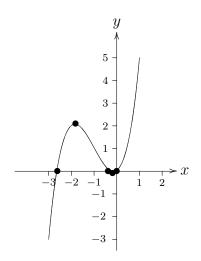
Factorisation: $x^3 + 3x^2 + x = x(x^2 + 3x+1)$. Find factorisation of $x^2 + 3x + 1$ using the solution formula for $x^2 + 3x + 1 = 0$. This yields $x = \frac{-3 \pm \sqrt{5}}{2}$. Thus, factorisation is

$$x^{3} + 3x^{2} + x =$$

$$x\left(x - \frac{-3 + \sqrt{5}}{2}\right)\left(x - \frac{-3 - \sqrt{5}}{2}\right).$$

So, x-intercepts are at $x=\frac{-3-\sqrt{5}}{2}\approx$ $-2.618,~x=\frac{-3+\sqrt{5}}{2}\approx -0.382$ and at x=0.

Sketch of $f(x) = x^3 + 3x^2 + x$:



7. $y = \tan x$: Aymptotes at $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \pm \frac{7\pi}{2}, \dots$ (π -periodic). x-intercepts at $x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$ (π -periodic).

